/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Comments and Hints on
Mandatory Iteration 3 / Strategies

eV Beta/Gamma/Delta

AARHUS UNIVERSITET
« This is the Strategy week (or 3-1-2 week)
— BetaStone Maintain BOTH variants Alpha+Beta
— GammaStone Maintain ALL variants
— DeltaStone Maintain ALL variants
« Thatis

— The aspects that vary
* Mana production
* Winner determination
* Hero Power
« Deck building

— ... Must be ®D©® processed I:> Several Strategy Patterns
* Or rather examples of Compositional Design...

eV Refactor First / Add Features Then

AARHUS UNIVERSITET
e For all

CS@AU Henrik Baerbak Christensen 3

/v

Unit / Integration Tests
AARHUS UNIVERSITET

« Some strategies can be tested in isolation — do it!

— Just like ‘RateStrategies’ could be tested as a unit, so can some
of the HotStone strategies.

— Itis often MUCH simpler!

« Example: DeltaStone is a variant with other cards (The
‘DishDeck’)

— Encapsulate what varies (building a deck)
— Program to an interface (define nice interface for that)
— Favor object composition (game asks strategy to build a deck)

/v Unit/Integration Testing

AARHUS UNIVERSITET

» So there will be ‘an implementation of “build deck
strategy” that create a deck’
— Typical return some kind of List<Card> or array or ...

« The Unit Testing Point

— Does TDD/testing of that implementation rely on Game?
* Most likely not! /t is just returning something
— Then test it in isolation!
* Given strategy to create a dishdeck
« When | create the strategy
« Then it contains ...

/v Unit/Integration Testing

AARHUS UNIVERSITET

* Not all aspects can be tested disjointly from Game
— [At least not now, we will be able to do so, at a later point...]

« Example
— GammaStone Hero Power — need to modify game’s state

— BetaStone Winner? Maybe — or maybe not?
* Discuss in the SWEA Kata

/v

AARHUS UNIVERSITET

Strategies That Inspect
and Modify State

/v Determine Winner/Stop Game

AARHUS UNIVERSITET
* Determining the winner is one thing...

« But winning the game means no further method calls are
allowed, right?
— Should we guard all calls to see if game is still ongoing?

 The reasoning is sound, but...

* The Ul will handle it!

— Down the road ...

« So: KISS: Keep it simple, stupid

/v

GammaStone HeroPower
AARHUS UNIVERSITET

* The specification:

* Hero Power. The ThaiChet’s power Chili will decrease the opponent hero’s health
by 2. Description: Deal 2 damage to opponent hero. The DanishChef’s power Sovs

will field a special minion “Sovs” of value (attack, health) = (1,1). Description:
Summon Sovs card.

e Thatis

— Mutation of game’s state from another object than game!
« Game will call strategy to tell that user wants to use hero power
« But... The strategy then needs to modify state of the calling game!

Game Strategy

Henrik Baerbak Christensen

CS@AU

/v The “Back pointer”

AARHUS UNIVERSITET

» As the strategy object must be able to mutate game, it
must be provided with a reference to game

« We can handle by a mutual reference or “back pointer”

— Ala calling from within the Game object (this):
* myHeroPowerStrategy.useThePower(who, this) or
» getHero(who).getHeroPowerStrategy().executg(this)

— But — Game has no special mutator methods for, say, decrease
hero ‘who’s health by two

CS@AU Henrik Baerbak Christensen 10

/v

AARHUS UNIVERSITET

* Ok, so Game has asked the strategy to ‘execute that
hero power’ — what does that concrete strategy then do?

 Example: ThaiChef “Deal 2 damage to opp. hero”

« Either
— A) Get the opponent hero (type: Hero), castitto a
(StandardHero), and call a mutator, ala

« StandardHero hero = (StandardHero) game.getHero(who);
* hero.changeHealth(-2);

Modifying Game’s State

— B) Add a mutator method to game to encapsulate that, ala
« game.changeHeroHealth(who, deltaValue);

/v Analysis

AARHUS UNIVERSITET

« Exercise: Which is better? Or are they equal?
— A: “game.getHero(who).changeHealth(-2)"
— B: “game.changeHeroHealth(who, -2)”

Strategy

* Arguments? Pros and Cons?

« Remember previous courses’ discussion on coupling and

cohesion?
— Low coupling = “do not talk to strangers”
— High cohesion = “l handle all related to me”

CS@AU Henrik Baerbak Christensen 12

/v Analysis

AARHUS UNIVERSITET
« Low coupling = “do not talk to strangers”
» High cohesion = “| handle all related to me”

* Which is more favorable?
— A: “game.getHero(who).changeHealth(-2)”
— B: “game.changeHeroHealth(who, -2)”

Strategy

CS@AU Henrik Baerbak Christensen 13

/v Analysis

AARHUS UNIVERSITET
« Low coupling = “do not talk to strangers”
« High cohesion = “| handle all related to me”

Strategy

« Which is more favorable?
— A: “game.getHero(who).changeHealth(-2)"
— B: “game.changeHeroHealth(who, -2)”

e Bis:
— Strategy does not talk to Hero, only Game (no strangers)

— Strategy does not change Game’s state ‘behind the scene’,
(game handles everything related to its state.)
CS@AU Henrik Baerbak Christensen 14

/v General Rule

AARHUS UNIVERSITET

Do not let any strategy...
— Get hero/card and modify state on them (talking to strangers)

— Get game’s internal data structures and modify state on them
» Both talking to strangers and breaking encapsulation!

» Instead Do let any strategy that needs to modify
game state:

— Get a reference to game (implementation), and call (new)
mutator methods that let game itself modify internal state
and data structures!

/v

AARHUS UNIVERSITET

Hero Subclasses

Why not just subclass to handle
GammasStone Hero ?

VeV XHero

AARHUS UNIVERSITET

 IntProg taught about subclassing, so why not use it here?

— A hero has a power, so why not add ‘usePower(...) method to
Hero, and use subclassing

« BabyHero::usePower(Game g) { // do nothing }
* ThaiHero extends BabyHero
« usePower(Game g) { [cast g to StandardGame, call mutators;] }
« This is a correct solution to the functional
requirement — and design-wise a sound one.

 But in SWEA we train a compositional approach! So
k to train that, you should avoid inheritance.

|

Y Compositional Hero

AARHUS UNIVERSITET
« Thus, your options to train are Strategy based approach
— Either a Strategy in the Game or in the Hero

« Ala

— Game::usePower() { heroStrategy.execPower(who, this); }

— Or hero has a strategy

— Game::usePower() {
getHero(who).getPowerStrategy().execPower(this);}

Y Compositional Hero

AARHUS UNIVERSITET

« Thus your options to train are Strategy based approach
— Either in Game or in the Hero

« Ala

— Game::usePower() { heroStraj), will leg
— Or hero has a strategy

— Game::usePower() {
getHero(who).getPowerStrat

— Or a pure ‘lambda function’ approacH.

» Game/hero has a Consumer<Game> functional interface/lambda
expression

CS@AU Henrik Beerbak Christensen 19

/v DeltaStone

AARHUS UNIVERSITET
« Strategy = algorithm that varies
« Here: Game’s algorithm to build a deck varies

« One note

— The deck is shuffled — how to TDD that???

 i.e. You cannot assertThat card 17 is Poke Bowl because it may be
Green Salad ®

— (We will come back to a solution to this later, but we can do
something now)

— Any ideas?
* Hint — look at the specifications — we know something

VeV DishDeck

AARHUS UNIVERSITET
« How to TDD a deck which is shuffled?

 TDD the aspects that you know about

— First card has mana 1 = ..., 1s(1)
— Second card has mana 1 or 2 = ..., lessThanOrEqualTo(2)
* There are exactly two Noodle Soup Cards in deck
ossertThot(dishDeck
.stream()

.filter(card -> card.getName().equals(cardName))
.count(),
is(wvalue: 21));

« Make a private test method to verify the exact cost,
attack, health of a given card
— And use it on each card type: Tomato Salad, Brown Rice, ...

verifiyCardSpecs(dishDeck, GameConstants.BROWN_RICE_CARD, st: 1, k: 1, a 1 2);
verifiyCardSpecs(dishDeck, GameConstants.FRENCH_FRIES_CARD, st: 1, k: 2, = :1);

eV Randomness?

AARHUS UNIVERSITET

« How to test that the deck is really random?

— Generate N decks, assertThat(“they are different”)

« Ahem — with a probability higher than ...
— (We could encounter two random runs that generate same deck!)

 Evident test

— If you write 10 lines of test code to test 1 line of production code
your bug will be in the test code &

* How to shuffle a deck in Java?
— 1 line: Collections.shuffle(myDeck);
— Itis TDD principle "obvious implementation”

