
Software Engineering

and Architecture

Comments and Hints on

Mandatory Iteration 3 / Strategies

Beta/Gamma/Delta

• This is the Strategy week (or 3-1-2 week)

– BetaStone Maintain BOTH variants Alpha+Beta

– GammaStone Maintain ALL variants

– DeltaStone Maintain ALL variants

• That is

– The aspects that vary

• Mana production

• Winner determination

• Hero Power

• Deck building

– … Must be  processed Several Strategy Patterns

• Or rather examples of Compositional Design…

CS@AU Henrik Bærbak Christensen 2

Refactor First / Add Features Then

• For all

– Introduce the XStrategy first by making AlphaStone’s test cases

pass first

– Only then do you introduce the specific new tests to drive the new

XStone specific behavior into existence

CS@AU Henrik Bærbak Christensen 3

Unit / Integration Tests

• Some strategies can be tested in isolation – do it!

– Just like ‘RateStrategies’ could be tested as a unit, so can some

of the HotStone strategies.

– It is often MUCH simpler!

• Example: DeltaStone is a variant with other cards (The

‘DishDeck’)

– Encapsulate what varies (building a deck)

– Program to an interface (define nice interface for that)

– Favor object composition (game asks strategy to build a deck)

CS@AU Henrik Bærbak Christensen 4

Unit/Integration Testing

• So there will be ‘an implementation of “build deck

strategy” that create a deck’

– Typical return some kind of List<Card> or array or …

• The Unit Testing Point

– Does TDD/testing of that implementation rely on Game?

• Most likely not! It is just returning something

– Then test it in isolation!

• Given strategy to create a dishdeck

• When I create the strategy

• Then it contains …

CS@AU Henrik Bærbak Christensen 5

Unit/Integration Testing

• Not all aspects can be tested disjointly from Game

– [At least not now, we will be able to do so, at a later point…]

• Example

– GammaStone Hero Power – need to modify game’s state

– BetaStone Winner? Maybe – or maybe not?

• Discuss in the SWEA Kata

CS@AU Henrik Bærbak Christensen 6

Strategies That Inspect

and Modify State

CS@AU Henrik Bærbak Christensen 7

Determine Winner/Stop Game

• Determining the winner is one thing…

• But winning the game means no further method calls are

allowed, right?

– Should we guard all calls to see if game is still ongoing?

• The reasoning is sound, but…

• The UI will handle it!

– Down the road …

• So: KISS: Keep it simple, stupid

CS@AU Henrik Bærbak Christensen 8

GammaStone HeroPower

• The specification:

• That is

– Mutation of game’s state from another object than game!

• Game will call strategy to tell that user wants to use hero power

• But… The strategy then needs to modify state of the calling game!

CS@AU Henrik Bærbak Christensen 9

Game Strategy

The “Back pointer”

• As the strategy object must be able to mutate game, it

must be provided with a reference to game

• We can handle by a mutual reference or “back pointer”

– Ala calling from within the Game object (this):

• myHeroPowerStrategy.useThePower(who, this); or

• getHero(who).getHeroPowerStrategy().execute(this);

– But – Game has no special mutator methods for, say, decrease

hero ‘who’s health by two

CS@AU Henrik Bærbak Christensen 10

Game Strategy

Modifying Game’s State

• Ok, so Game has asked the strategy to ‘execute that

hero power’ – what does that concrete strategy then do?

• Example: ThaiChef “Deal 2 damage to opp. hero”

• Either

– A) Get the opponent hero (type: Hero), cast it to a

(StandardHero), and call a mutator, ala

• StandardHero hero = (StandardHero) game.getHero(who);

• hero.changeHealth(-2);

– B) Add a mutator method to game to encapsulate that, ala

• game.changeHeroHealth(who, deltaValue);

CS@AU Henrik Bærbak Christensen 11

Analysis

• Exercise: Which is better? Or are they equal?

– A: “game.getHero(who).changeHealth(-2)”

– B: “game.changeHeroHealth(who, -2)”

• Arguments? Pros and Cons?

• Remember previous courses’ discussion on coupling and

cohesion?

– Low coupling = “do not talk to strangers”

– High cohesion = “I handle all related to me”

CS@AU Henrik Bærbak Christensen 12

Game Strategy

Hero

Analysis

• Low coupling = “do not talk to strangers”

• High cohesion = “I handle all related to me”

• Which is more favorable?

– A: “game.getHero(who).changeHealth(-2)”

– B: “game.changeHeroHealth(who, -2)”

CS@AU Henrik Bærbak Christensen 13

Game Strategy

Hero

Analysis

• Low coupling = “do not talk to strangers”

• High cohesion = “I handle all related to me”

• Which is more favorable?

– A: “game.getHero(who).changeHealth(-2)”

– B: “game.changeHeroHealth(who, -2)”

• B is:

– Strategy does not talk to Hero, only Game (no strangers)

– Strategy does not change Game’s state ‘behind the scene’,

(game handles everything related to its state.)

CS@AU Henrik Bærbak Christensen 14

Game Strategy

Hero

A

General Rule

• Do not let any strategy…

– Get hero/card and modify state on them (talking to strangers)

– Get game’s internal data structures and modify state on them

• Both talking to strangers and breaking encapsulation!

• Instead Do let any strategy that needs to modify

game state:

– Get a reference to game (implementation), and call (new)

mutator methods that let game itself modify internal state

and data structures!

CS@AU Henrik Bærbak Christensen 15

Hero Subclasses

Why not just subclass to handle

GammaStone Hero ?

XHero

• IntProg taught about subclassing, so why not use it here?

– A hero has a power, so why not add ‘usePower(…)’ method to

Hero, and use subclassing

• BabyHero::usePower(Game g) { // do nothing }

• ThaiHero extends BabyHero

• usePower(Game g) { [cast g to StandardGame, call mutators;] }

• This is a correct solution to the functional

requirement – and design-wise a sound one.

• But in SWEA we train a compositional approach! So

to train that, you should avoid inheritance.

CS@AU Henrik Bærbak Christensen 17

Compositional Hero

• Thus, your options to train are Strategy based approach

– Either a Strategy in the Game or in the Hero

• Ala

– Game::usePower() { heroStrategy.execPower(who, this); }

– Or hero has a strategy

– Game::usePower() {

getHero(who).getPowerStrategy().execPower(this);}

– Or a pure ‘lambda function’ approach:

• Game/hero has a Consumer<Game> functional interface/lambda

expression

CS@AU Henrik Bærbak Christensen 18

Compositional Hero

• Thus your options to train are Strategy based approach

– Either in Game or in the Hero

• Ala

– Game::usePower() { heroStrategy.execPower(who, this); }

– Or hero has a strategy

– Game::usePower() {

getHero(who).getPowerStrategy().execPower(this);}

– Or a pure ‘lambda function’ approach:

• Game/hero has a Consumer<Game> functional interface/lambda

expression

CS@AU Henrik Bærbak Christensen 19

DeltaStone

• Strategy = algorithm that varies

• Here: Game’s algorithm to build a deck varies

• One note

– The deck is shuffled – how to TDD that???

• i.e. You cannot assertThat card 17 is Poke Bowl because it may be

Green Salad 

– (We will come back to a solution to this later, but we can do

something now)

– Any ideas?

• Hint – look at the specifications – we know something

CS@AU Henrik Bærbak Christensen 20

DishDeck

• How to TDD a deck which is shuffled?

• TDD the aspects that you know about

– First card has mana 1 = …, is(1)

– Second card has mana 1 or 2 = …, lessThanOrEqualTo(2)

• There are exactly two Noodle Soup Cards in deck

• Make a private test method to verify the exact cost,

attack, health of a given card

– And use it on each card type: Tomato Salad, Brown Rice, …

CS@AU Henrik Bærbak Christensen 21

Randomness?

• How to test that the deck is really random?

– Generate N decks, assertThat(“they are different”)

• Ahem – with a probability higher than …

– (We could encounter two random runs that generate same deck!)

• Evident test

– If you write 10 lines of test code to test 1 line of production code

your bug will be in the test code 

• How to shuffle a deck in Java?

– 1 line: Collections.shuffle(myDeck);

– It is TDD principle ”obvious implementation”

CS@AU Henrik Bærbak Christensen 22

